
Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Implementing an interface for virtual input devices into
the MGSim simulator

Koen Putman 1 (Author) Raphael Poss 2 (Supervisor)

1LIACS - Leiden University

2UvA - University of Amsterdam

February 21, 2017



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Presentation overview

1. Introduction
2. Requirements and prior work
3. Interface design
4. Implementation in MGSim
5. Results
6. Demonstration
7. Conclusion



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Introduction

• The MGSim simulator
• Configurable and extensible
• Used for research
• Used for education

• Simple infrastructure
• No direct interaction with a running simulation
• Virtual graphical output interface

• The idea
• Providing an interface to access external devices

• Joystick/controller, Mice, Touch devices
• Allows students to create interactive programs
• Teach students about memory mapped I/O
• Unpredictable source of I/O data



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Requirements

• Provides access to features of SDL 2.0
• Should resemble actual hardware
• Component implementation
• Documentation/examples
• Minimise input latency
• Deterministic record/replay



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Existing frameworks

• Simple DirectMedia Layer (SDL)
• DirectInput
• XInput
• Linux input devices
• X Input Device Extension Library (Xinput)
• Kivy



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Framework feature overview

Framework Joystick

Keyboard/mouse Touch Events State access

SDL Many

Unified Multi Unified Yes

DirectInput Many

Individual No Per device Yes

XInput (Microsoft) 4

No No No Yes

Linux kernel API Many

Individual Multi Per device Yes

XInput (X11) No

Unified Multi Unified Yes

Kivy Many

No Multi Per widget No

SDL features cross platform access to:
• As many joysticks as the platform allows

• Unified keyboard and mouse
• Multi touch and gestures
• A unified event queue
• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Framework feature overview

Framework Joystick Keyboard/mouse

Touch Events State access

SDL Many Unified

Multi Unified Yes

DirectInput Many Individual

No Per device Yes

XInput (Microsoft) 4 No

No No Yes

Linux kernel API Many Individual

Multi Per device Yes

XInput (X11) No Unified

Multi Unified Yes

Kivy Many No

Multi Per widget No

SDL features cross platform access to:
• As many joysticks as the platform allows
• Unified keyboard and mouse

• Multi touch and gestures
• A unified event queue
• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Framework feature overview

Framework Joystick Keyboard/mouse Touch

Events State access

SDL Many Unified Multi

Unified Yes

DirectInput Many Individual No

Per device Yes

XInput (Microsoft) 4 No No

No Yes

Linux kernel API Many Individual Multi

Per device Yes

XInput (X11) No Unified Multi

Unified Yes

Kivy Many No Multi

Per widget No

SDL features cross platform access to:
• As many joysticks as the platform allows
• Unified keyboard and mouse
• Multi touch and gestures

• A unified event queue
• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Framework feature overview

Framework Joystick Keyboard/mouse Touch Events

State access

SDL Many Unified Multi Unified

Yes

DirectInput Many Individual No Per device

Yes

XInput (Microsoft) 4 No No No

Yes

Linux kernel API Many Individual Multi Per device

Yes

XInput (X11) No Unified Multi Unified

Yes

Kivy Many No Multi Per widget

No

SDL features cross platform access to:
• As many joysticks as the platform allows
• Unified keyboard and mouse
• Multi touch and gestures
• A unified event queue

• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Framework feature overview

Framework Joystick Keyboard/mouse Touch Events State access
SDL Many Unified Multi Unified Yes
DirectInput Many Individual No Per device Yes
XInput (Microsoft) 4 No No No Yes
Linux kernel API Many Individual Multi Per device Yes
XInput (X11) No Unified Multi Unified Yes
Kivy Many No Multi Per widget No

SDL features cross platform access to:
• As many joysticks as the platform allows
• Unified keyboard and mouse
• Multi touch and gestures
• A unified event queue
• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Design overview

• Uses packet based MMIO network
• Own address space
• Read/write requests
• Supports sending interrupts

• Design is a mock-up
• Address space is divided into sections

• Based on bits of the address
• Major sections on bit 11+
• First section subdivides on bit 10
• First subdivision subdivides on bit 9



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Control section

• Only allows 8-bit operations
• About the interface
• Only writeable section
• Controls features
• Controls event queue

Address Reading Writing
0 Device type Enables or disables device
1 Events activated Enables or disables events
2 Interrupts activated Enables or disables interrupts
3 Interrupt channel Sets the interrupt channel
4 Event queue size Pops the event queue



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Device information section

• Only allows 32-bit read operations
• Describes device layout
• Each entry corresponds to a state access section
• Every value contains 4 8-bit values

• Amount of items in that section
• Access width for the section
• Amount of bits per value
• Amount of values per item

Bits 25-32 17-24 9-16 0-8
Value 6 2 16 1

Meaning 6 axes 16-bit 16 bits 1 per axis

Table: Example for Xbox 360 controller axes



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Event access

• Only allows 32-bit read operations
• Access the front of the FIFO queue
• Implementation defined events
• Selective chunk copying



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Direct state access

• Rest of the sections
• Access width is variable
• Direct access to state of parts
• Implementation defined



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Architecture model

Control
unit

Device
information

FIFO
event
queue

Direct state
access 1

Direct state
access 2

Direct state
access n

Request
destination
selection

read/write
request

- source
- addr.
- size
- data(opt.)

addr./size/data for write requests

Response
generator

dest.
size

read
response

addr./size for read requests

Mux

Mux

Mux

resp.
data

data

info

event chunk

state data 1

state data 2

state data n

addr. bits for selection
911+ 10

Interrupt
generator

interrupt
request

interrupt enable/channel

pop/clear

Microcontroller
connected to
external device

enable device/events

device type/event notification

fills info

fills queue

update state

update state

update state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Design decisions

• Access width
• Event queue popping
• Extensibility



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Implementation overview

• Path to our final implementation
• Proof of concept using UART
• Connecting MGSim to external devices
• Updating the UART
• Creating a component that implements our interface



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Universal asynchronous receiver/transmitter (UART)

• Allows systems to communicate serially
• No elaborate synchronisation
• Transmits packets of individual bits
• Writing transmits, reading receives
• Usually have FIFO to prevent data loss
• Common on microcontrollers



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Component modifications

• UART component features
• Supports reading from file descriptors
• FIFO for both transmitting and receiving

• Connecting it to a joystick
• Use the Linux Joystick API
• Event byte queue is emptied into FIFO

• Capabilities and limitations
• Transmits simple joystick events
• Only works on Linux



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

SDLInputManager

• Heavily modified DisplayManager
• Support for joysticks, mouse, touch devices
• Client based model

• A client implements an interface
• Clients can register for a device
• Events are dispatched to clients
• Access to device layout information
• Access to joystick/mouse state

• State data types based on joystick
• Custom event structures



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Joystick data type: Axes

• Signed 16-bit values
• Represents an absolute position
• Used for clearly bounded sources

• Sliders and triggers
• Joy- and analogue sticks
• Mouse pointer position



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Joystick data type: Buttons
• Single bits in a byte
• Binary state, pressed or released
• Used for joystick and mouse buttons



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Joystick data type: Hats

• Lower 4 bits of a byte
• A bit for every main direction
• Used for directional pads



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Joystick data type: Balls

• Two signed 16-bit values
• Relative movement on 2 axes
• Used for trackballs and mouse movement



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Event structure

• SDL event structures were not optimal
• A new structure for each device type

• Optimised for our case
• Converted from SDL events
• Better than one structure for all

• Touch events
• SDL uses floating point values
• We convert them to fixed point



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

SDLInputManager implementation

• Client management
• Only one mouse and one touch client
• Only one client per joystick

• Event loop
• Configurable checking frequency
• Events are converted and dispatched

• Device layout information
• Amount of data sources of every type

• State updates
• Only available for joystick/mouse
• Filled using SDL function calls



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Modifying the UART for the new system

• Added a new mode
• Events are queued similarly
• Slower, 10 v.s. 8 byte events
• Supports more features
• Platform independent



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

The JoyInput component

• Implements our interface design
• Configurable to access joystick, mouse, or touch devices
• Uses all features of the manager
• Allows recording and replaying sessions



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

SDLInputManager interaction

• Registration happens on interface activation
• Local device info and state are updated
• Events it receives are

• used to keep the state up to date
• added to the queue when appropriate



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Request handling

• Write requests
• Easy to validate
• Handled with switch statement
• Handles component state changes

• Read requests
• Handled with nested switch statements
• Requests are validated per section
• Section details

• Control section is straightforward
• Device information is mostly static
• Event access uses a pointer
• Direct state access converts address into index

• Ensures correct response endianness



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Replay functionality

• Saved and replayed at request level
• Stored in plain text file
• Requests are verified on playback
• Does not stall system
• Interrupts are not supported



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Performance comparison

• Comparing UART and JoyInput
• Testing joystick event copying speed

uint8_t buff[n]; //n = event size
if (uart[5] & 1){ //Timing starts on uart[5] receive

buff[0] = uart[0]; //Copy a byte from the UART
...
buff[n-1] = uart[0];//Timing ends on receive

}

uint32_t buff[3];
if (joydev[4]){ //Timing starts on joydev[4] receive

buff[0] = joydevev[0];
buff[1] = joydevev[1]; //only copied chunk for partial events
buff[2] = joydevev[2]; //Timing ends on receive
joydev[4] = 1; //Pop the event queue

}



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Comparison results

Configuration Original cycles

Corrected cycles

JoyInput (partial event) 22

36

JoyInput (full event) 24

39

UART using joystick API 49

51

UART using SDL 44

64

• Initial results based on response
• JoyInput performs as expected
• UART requires investigation

• All tests store some data to stack

• Corrected results for last store

• Results match expectations



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Comparison results

Configuration Original cycles Corrected cycles
JoyInput (partial event) 22 36
JoyInput (full event) 24 39
UART using joystick API 49 51
UART using SDL 44 64

• Initial results based on response
• JoyInput performs as expected
• UART requires investigation

• All tests store some data to stack
• Corrected results for last store

• Results match expectations



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Other tests

• Difference in latency between APIs
• Both APIs connected to same joystick
• No difference

• Input latency
• Based on perception not measurement
• Should not be a problem



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Live demonstration

A showcase of some example programs.



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

What works

• Can connect to external devices
• Provides device information
• Provides event system
• Provides state access
• Replay can be saved and replayed



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Future work

• Design and component
• Stall processor during replay
• Alternative replay type
• Variable width for direct state access

• External device interaction
• Touch input handling improvements
• Adding relative mouse mode
• Handling device dis- and reconnection
• Support force feedback
• Support SDL event generation with no active window



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Questions?

Contact: Koen Putman <koen@putman.pw>

Thesis/slides available on http://putman.pw/

Code available on GitHub:
MGSim branch: https://github.com/Fleppensteyn/mgsim
Examples: https://github.com/Fleppensteyn/joyinput-examples


	Introduction
	Requirements and prior work
	Requirements and prior work

	Interface design
	Interface design

	Implementation in MGSim
	Proof of concept
	Connecting to SDL-based devices
	The JoyInput component

	Results
	Results

	Demonstration
	Conclusion
	Conclusion


