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Introduction

• The MGSim simulator
• Configurable and extensible
• Used for research
• Used for education

• Simple infrastructure
• No direct interaction with a running simulation
• Virtual graphical output interface

• The idea
• Providing an interface to access external devices

• Joystick/controller, Mice, Touch devices
• Allows students to create interactive programs
• Teach students about memory mapped I/O
• Unpredictable source of I/O data
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Requirements

• Provides access to features of SDL 2.0
• Should resemble actual hardware
• Component implementation
• Documentation/examples
• Minimise input latency
• Deterministic record/replay
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Existing frameworks

• Simple DirectMedia Layer (SDL)
• DirectInput
• XInput
• Linux input devices
• X Input Device Extension Library (Xinput)
• Kivy
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Framework feature overview

Framework Joystick

Keyboard/mouse Touch Events State access

SDL Many

Unified Multi Unified Yes

DirectInput Many

Individual No Per device Yes

XInput (Microsoft) 4

No No No Yes

Linux kernel API Many

Individual Multi Per device Yes

XInput (X11) No

Unified Multi Unified Yes

Kivy Many

No Multi Per widget No

SDL features cross platform access to:
• As many joysticks as the platform allows

• Unified keyboard and mouse
• Multi touch and gestures
• A unified event queue
• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Framework feature overview

Framework Joystick Keyboard/mouse

Touch Events State access

SDL Many Unified

Multi Unified Yes

DirectInput Many Individual

No Per device Yes

XInput (Microsoft) 4 No

No No Yes

Linux kernel API Many Individual

Multi Per device Yes

XInput (X11) No Unified

Multi Unified Yes

Kivy Many No

Multi Per widget No

SDL features cross platform access to:
• As many joysticks as the platform allows
• Unified keyboard and mouse

• Multi touch and gestures
• A unified event queue
• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Framework feature overview

Framework Joystick Keyboard/mouse Touch

Events State access

SDL Many Unified Multi

Unified Yes

DirectInput Many Individual No

Per device Yes

XInput (Microsoft) 4 No No

No Yes

Linux kernel API Many Individual Multi

Per device Yes

XInput (X11) No Unified Multi

Unified Yes

Kivy Many No Multi

Per widget No

SDL features cross platform access to:
• As many joysticks as the platform allows
• Unified keyboard and mouse
• Multi touch and gestures

• A unified event queue
• Direct access to device state



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion
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Design overview

• Uses packet based MMIO network
• Own address space
• Read/write requests
• Supports sending interrupts

• Design is a mock-up
• Address space is divided into sections

• Based on bits of the address
• Major sections on bit 11+
• First section subdivides on bit 10
• First subdivision subdivides on bit 9
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Control section

• Only allows 8-bit operations
• About the interface
• Only writeable section
• Controls features
• Controls event queue

Address Reading Writing
0 Device type Enables or disables device
1 Events activated Enables or disables events
2 Interrupts activated Enables or disables interrupts
3 Interrupt channel Sets the interrupt channel
4 Event queue size Pops the event queue



Introduction Requirements and prior work Interface design Implementation in MGSim Results Demonstration Conclusion

Device information section

• Only allows 32-bit read operations
• Describes device layout
• Each entry corresponds to a state access section
• Every value contains 4 8-bit values

• Amount of items in that section
• Access width for the section
• Amount of bits per value
• Amount of values per item

Bits 25-32 17-24 9-16 0-8
Value 6 2 16 1

Meaning 6 axes 16-bit 16 bits 1 per axis

Table: Example for Xbox 360 controller axes
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Event access

• Only allows 32-bit read operations
• Access the front of the FIFO queue
• Implementation defined events
• Selective chunk copying
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Direct state access

• Rest of the sections
• Access width is variable
• Direct access to state of parts
• Implementation defined
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Design decisions

• Access width
• Event queue popping
• Extensibility
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Implementation overview

• Path to our final implementation
• Proof of concept using UART
• Connecting MGSim to external devices
• Updating the UART
• Creating a component that implements our interface
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Universal asynchronous receiver/transmitter (UART)

• Allows systems to communicate serially
• No elaborate synchronisation
• Transmits packets of individual bits
• Writing transmits, reading receives
• Usually have FIFO to prevent data loss
• Common on microcontrollers
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Component modifications

• UART component features
• Supports reading from file descriptors
• FIFO for both transmitting and receiving

• Connecting it to a joystick
• Use the Linux Joystick API
• Event byte queue is emptied into FIFO

• Capabilities and limitations
• Transmits simple joystick events
• Only works on Linux
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SDLInputManager

• Heavily modified DisplayManager
• Support for joysticks, mouse, touch devices
• Client based model

• A client implements an interface
• Clients can register for a device
• Events are dispatched to clients
• Access to device layout information
• Access to joystick/mouse state

• State data types based on joystick
• Custom event structures
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Joystick data type: Axes

• Signed 16-bit values
• Represents an absolute position
• Used for clearly bounded sources

• Sliders and triggers
• Joy- and analogue sticks
• Mouse pointer position
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Joystick data type: Buttons
• Single bits in a byte
• Binary state, pressed or released
• Used for joystick and mouse buttons
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Joystick data type: Hats

• Lower 4 bits of a byte
• A bit for every main direction
• Used for directional pads
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Joystick data type: Balls

• Two signed 16-bit values
• Relative movement on 2 axes
• Used for trackballs and mouse movement
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Event structure

• SDL event structures were not optimal
• A new structure for each device type

• Optimised for our case
• Converted from SDL events
• Better than one structure for all

• Touch events
• SDL uses floating point values
• We convert them to fixed point
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SDLInputManager implementation

• Client management
• Only one mouse and one touch client
• Only one client per joystick

• Event loop
• Configurable checking frequency
• Events are converted and dispatched

• Device layout information
• Amount of data sources of every type

• State updates
• Only available for joystick/mouse
• Filled using SDL function calls
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Modifying the UART for the new system

• Added a new mode
• Events are queued similarly
• Slower, 10 v.s. 8 byte events
• Supports more features
• Platform independent
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The JoyInput component

• Implements our interface design
• Configurable to access joystick, mouse, or touch devices
• Uses all features of the manager
• Allows recording and replaying sessions
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SDLInputManager interaction

• Registration happens on interface activation
• Local device info and state are updated
• Events it receives are

• used to keep the state up to date
• added to the queue when appropriate
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Request handling

• Write requests
• Easy to validate
• Handled with switch statement
• Handles component state changes

• Read requests
• Handled with nested switch statements
• Requests are validated per section
• Section details

• Control section is straightforward
• Device information is mostly static
• Event access uses a pointer
• Direct state access converts address into index

• Ensures correct response endianness
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Replay functionality

• Saved and replayed at request level
• Stored in plain text file
• Requests are verified on playback
• Does not stall system
• Interrupts are not supported
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Performance comparison

• Comparing UART and JoyInput
• Testing joystick event copying speed

uint8_t buff[n]; //n = event size
if (uart[5] & 1){ //Timing starts on uart[5] receive

buff[0] = uart[0]; //Copy a byte from the UART
...
buff[n-1] = uart[0];//Timing ends on receive

}

uint32_t buff[3];
if (joydev[4]){ //Timing starts on joydev[4] receive

buff[0] = joydevev[0];
buff[1] = joydevev[1]; //only copied chunk for partial events
buff[2] = joydevev[2]; //Timing ends on receive
joydev[4] = 1; //Pop the event queue

}
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Comparison results

Configuration Original cycles

Corrected cycles

JoyInput (partial event) 22

36

JoyInput (full event) 24

39

UART using joystick API 49

51

UART using SDL 44

64

• Initial results based on response
• JoyInput performs as expected
• UART requires investigation

• All tests store some data to stack

• Corrected results for last store

• Results match expectations
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Other tests

• Difference in latency between APIs
• Both APIs connected to same joystick
• No difference

• Input latency
• Based on perception not measurement
• Should not be a problem
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Live demonstration

A showcase of some example programs.
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What works

• Can connect to external devices
• Provides device information
• Provides event system
• Provides state access
• Replay can be saved and replayed
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Future work

• Design and component
• Stall processor during replay
• Alternative replay type
• Variable width for direct state access

• External device interaction
• Touch input handling improvements
• Adding relative mouse mode
• Handling device dis- and reconnection
• Support force feedback
• Support SDL event generation with no active window
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Questions?

Contact: Koen Putman <koen@putman.pw>

Thesis/slides available on http://putman.pw/

Code available on GitHub:
MGSim branch: https://github.com/Fleppensteyn/mgsim
Examples: https://github.com/Fleppensteyn/joyinput-examples
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